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Abstract 
A basic knowledge about theoretical 

physics is required to understand why a 
thermoelectric material is better than 
another. This article popularizes the key 
concepts required to calculate the transport 
properties in thermoelectric materials.  
Instead of starting with electrons and 
phonons we explain how to calculate the 
energy flux and the thermal conductivity in 
a gas of molecules. By doing so the 
subtractions of the distribution function at 
the non- thermodynamically at the 
equilibrium, which enter in the calculation 
of the Figure-of-Merit is introduce 
intelligibly. The Boltzmann’s equation, 
which is used to calculate the Figure of 
Merit is derived by distinguishing the 
equilibrium state and the steady state. The 
profile of the ideal thermoelectric material 
is draw up.  

Introduction 
The best encouragement to learn 

about theoretical physics is that good 
thermoelectric materials were rarely 
discovered by coincidence. In fact the 
values of effective masses, sound velocity, 
and Debye temperature give already a good 
indication about the potential of a material 
as thermoelectrics. In every respect, it is 
important to read the book of H.J. 
Goldsmid “Electronic refrigeration” to 
related theses material properties to the 
thermoelectric propertiesi. This article set 
one’s heart on completing this book with a 
derivation of the energy flux, the thermal 
conductivity and the Boltzmann’s equation. 
The transport properties and Figure of 
Merit are given as a function of scattering 
parameter, the Fermi-level, the effective 
mass, the Debye temperature and various 

material constant assuming a parabolic 
band and one type of carrier. The 
maximization of the figure of merit is 
discussed. 

Energy fluxes and thermal conductivity  
Let consider a gas molecule with a speed vr  
and a temperature T dT+  (Figure 1). After 
a time τ , this molecule experience a 
collision. We refer to this time as the 
relaxation time. The molecule at the 
temperature dTT +  is not in 
thermodynamic equilibrium. The 
proportion such molecule is given by the 
distribution function ))(,( τvrTvf rrr

−  at the 
non-equilibrium. After the collision, the 
molecule is at the thermodynamic 
equilibrium and its temperature is T . The 
proportion of such molecule is given by the 
distribution function  in the 
thermodynamic equilibrium. The distance 
between the position 

))(, rTv rr(0f

τvrr
−r  and the 

position rr  is the mean free path . The 
mean free path is the distance traveled by a 
molecule without having experienced a 
collision. The mean free path is also the 
product of its speed with the relaxation 
time:

l

τ×= vl . The molecule at the 
temperature dTT +  carries an energy 

)(Tc dT+ , where  is the heat capacity. 
The molecule at the temperature 

c
T  carries 

the energy cT . Let assumes that the number 
of molecule per unit of volume is . We 
are calculating now the fluxes of energy 
through an imaginary plane (vertical line in 
Figure 1). The energy flux is: 

n

 ∫
∞

−+−×=
03

1 )dTT)(vr(T,v(f(nJU τrrr  

rr                   vdv)cT))r(T,v(f ×− 0  
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Let assumes, that the gradient of 
temperature is small (T ). In this 
case, the flux of energy becomes: 

TdT ≈+

∫
∞

−−××=
03

1 ))vr(T,v(f(cTnJU τrrr

rr

 

vdv)))r(T,v(f ×0  (Eq. 1) 
if , cT  and f were replaced in Eq. 1 by the 
density of state, the energy of an electron 
and the Fermi-Dirac distribution function 
respectively, and if the equation where 
evaluate in k-space with an additional 
electric field, the equation would give the 

energy flux of electron gas instead of the 
energy flux of a gas of molecules. 

n

Let derive now the thermal conductivity of 
a gas by starting from the Eq.1. The 
problem is the calculation of the 
distribution function at the non 
thermodynamic equilibrium. This will be 
done with a Talor’s serie of  in the 
neighborhood of T:  

),( Tvf r

T
)T,v(f)T,v(f)dTT,v(f

∂
∂

+=+
r

rr  

   
Figure 1: Depiction of the models used to calculate the energy flux of gas molecule subject to a temperature gradient. 

Let approximate  to : ),( Tvf r
),(0 Tvf r

∫
∞

×××
∂

∂
×=

0

0

3
1 vdvcTdT

T
)v(fnJU

 

Let replace now cT  through E  and let 
multiply and divide the energy flux by the 
mean free path. The energy flux is then 
given by: 

∫
∞

×××
∂

∂
×=

0

20

3
1

dx
dTdvE

T
)v(f

nJU υτ  

By using the definition of the thermal 
conductivity, xTJU ∆∆×= λ , the thermal 
conductivity of a gas of molecule is 
obtained :  

∫
∞

××××
∂

∂
×=

0

20

3
1 dvvE

T
)v(fn τλ  (Eq. 2) 

This equation can be extended for the 
calculation of the thermal conductivity of a 
solid. In this case, the density should be 
replace by the number of vibration mode 
per unit of volume )(g ω , the energy by 
ωh  and the distribution function  by the 

mean excitation number 
0f

)e( TkB 11 −= ωhn  

By doing so we can obtained the equation 
6.37 (page 108) of the book “thermal 
conduction in semiconductors” of  C.M. 
Bhandari and D.M. Rowe.ii 

The Boltzmann’s equation 
We would like now calculate the 
difference of distribution function of the 
electrons when a force F

r
 exerts its 

influence. The force F
r

 results from an 
electric field. Let assume that we are in the 
steady state. The distribution function at 
the non-equilibrium is not a function of the 
time: 0=dtdf .  

r
Since F  accelerate the electron, the 
distribution functions is also a function of 
the wave vector and the wave vector 
change between two collisions: 

rr

τ
τ

dFkdkF
h

r
h

r
=⇔

∂
∂

=  

If the position and the time just after the 
collision (figure 1) is rr  and ε+t , 
respectively, then at the time ετ +−t  
( 0≈ε ), the position was τvrr . By 
integration of 

r
−

dtdf  between ετ +−t  and  
ετ ++t , we obtain: 

rr
cst)dFk,vr(f)k,r(f =−−− h

rrrr ττ  
The problem is to give the value of the 
constant. At the time t  (prior to the 
collision), the distribution function 
is )k,r(f

rr . Just after this collision, at the 
time ε+t , the distribution function is 
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)k,r(f
rr

0 . Between ετ +−t  and t , the 
electron did not experience any collision. 
As a consequence, we can say that the 
distribution function did not change in 
value during the time τ . The distribution 
function changes just between  t  and ε+t . 
Having this in mind, the constant can be 
calculated: 

−)k,r(f )dF h
rrr τ

(f )k,r(fk
rrr

0=

)hFv
rr τ−

)k,rr

− vr(f ,r( rrr τ
rr
k,

(f

f∂

k

)k,

r
0=

=

,rr)k
r

−=

ξ

) )r( r

=−− k,vr(f
rrr τ  

r ),r −  
rrIf we are now developing k,r(f τ−  

with a Taylor’s series in the neighborhood 
of (

r
, we get: 

r
=−− )kf)dFk, h

rr
τ  

ττ
h

r

r

r
r

r

r F
k

)r((v
r
r((f

∂
−

∂
∂

−=  
rrr )k,r),r(f −  

And the Boltzmann’s equation is: 
rrr

∂
∂

+
∂

∂
h

r
r

r
r

r F
k

)k,r((fv
r

)k,r(f  

τ
)k(f,r(f

rr
0−

−=  (Eq. 3) 

Transport properties  
Thermodynamic identity TdS dNdU ξ  
is very important to calculate the transport 
properties and often overlooked. S is the 
entropy, U the intern energy,  the 
chemical potential and  is in fact the 
number of particles which experience a 
collision that bring the distribution 
function from 

dN

k,r(f
rr  to 

r
. This 

thermodynamic identity can be written in 
term of fluxes (Chapter 13, N.W 
Aschcroft, N.D. Mermin, solid state 
physics, chapter 13, equation 13.40):

k,f0

iii 
rrr

NUS JJJT ξ−=                                   (Eq. 4) 
It can be shown that the thermodynamic 
identity is also used to derive the Fermi-
Dirac distribution function in 
thermodynamic equilibrium.iv 
By using the (Eq. 4), the Boltzmann 
equation, and equations similar to (Eq. 2) 
but for the energy flux and the electric 
current, the transport properties are given 
by: 
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Where σ , α , eλ  and µ  are the electrical 
conductivity, the Seebeck coefficient, the 
electronic part of the thermal conductivity 
and the mobility, respectively. 
The figure of merit is given by: 
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where Lλ  is lattice thermal conductivity. 
The quality factor is given by: 
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It was supposed that the relaxation time 
can be expressed as a simple power law of 
the form , where λτ E0 λ  is the scattering 
parameter.  and  are the inertial and 
density of state effective mass in a 
multivalley (  valley) cubic crystal.  
are the Fermi-Dirac integral. 

Im

N

Nm

V rF

We assume the lattice thermal conductivity 
be given by the minimal thermal 
conductivity of solid by the sake of 
simplicity:  
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Where Dθ  is the Debye temperature, n is 
the number of atom per unit of volume and 
v is the sound velocity. 
The Debye temperature is: 
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The number of atom per unit of volume in 
MINλ  can be replaced by a function of Dθ  

in order to obtain the post-factor P plotted 

in the figure 2: 
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Figure 2: Post factor that enter in calculation 
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Figure 3: Thermopower for usual scattering parameter 

Discussion 
The Figure of Merit increases when the 
quality factor B increases. One way to 
increase B is to decrease the lattice thermal 
conductivity. It can be seen in the figure 1 
that the thermal conductivity will decrease 
when the Debye temperature will decrease. 
Materials with low Debye temperature are 
material with few atoms per unit of volume 
i.e. with larger interatomic distance. The 
second way to increase the quality factor is 
to decrease the inertial mass.v This can also 
be done by choosing a crystal structure 
with a large interatomic distance in the 
direction of the current flow. It may be 
apparent that the Quality Factor increases 
when the density of states effective  
mass increase. But it is not so evident since 
the pre-factor 

Nm

0τ  in the relaxation time 
may also be a function of m . In fact it 
can be shown than when the electron are 
scattered by acoustic phonon or in non-

polar semiconductor by optical phonon, the 
Quality Factor is not a function of . On 
the other hand, there are scattering 
mechanisms (neutral and ionized 
impurities, acoustic phonon in non-
centrosymmetrical crystal, optical phonon 
in polar-semiconductor) where higher  
may be favorable.

N

Nm

Nm
vi It is more evident that 

multivalley semiconductor (  large) is 
favorable to get large figure of merit. The 
effect of the scattering parameter is like for 
the density of state effective mass not so 
evident. It is clear that larger scattering 
factor promote large Seebeck coefficient 
(figure 3). Nevertheless, it does not mean 
that the figure of merit will be always 
larger because of the factor 

 in the Quality Factor. 
Since  is usually small (0.025 
eV@300K). Smaller scattering factor 
promote large Quality factor. If it is 
possible to decrease very slightly the value 
of 

VN

λτ +25
0

/
B )Tk)(T(

TkB

λ  by δλ  for a given scattering 
mechanism without affecting 0τ , a huge 
increase of the Quality Factor could be 
obtained. The increase would be about 10 
(λ =-0.5, δλλ − =-0.55) when the 
electrons are scattered by acoustic phonon 
at 300K: ( . 1025 /)2+λ/5

B )Tk

                              

≅λ+−δλ
BTk/(

                             

Conclusion 
An engineering of the relaxation time may 
result in increase of Quality Factor by a factor 
10. 
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